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Abstract It is well known that sequences of crystals

with Mackay icosahedral motif and increasing lattice

parameters exist converging to the icosahedral quasi-

crystal in the limit. They are known as rational

approximants. It has also been demonstrated that it is

possible to create icosahedral symmetry by irrational

twins involving five variants by 72� rotations around an

irrational axis [s 1 0] or an irrational angle of 44.48�
around a rotation axis [1 1 1]. These twinned crystals

do not share a coincidence site lattice. In this paper, it

is demonstrated that the above twinning relationship

arises in the limit of a sequence of coincidence site

lattices starting with the cubic twins with S = 3 and

extending through S = 7, 19, 49, 129, 337, …, ¥ created

by rotation around [1 1 1] axis. It is also noted that the

boundaries of higher CSL values (S > 7) are composed

of a combination of structural units from S = 3 and

S = 7 boundaries.

Introduction

Interest in purely geometrical ideas of interfaces

received an impetus over four decades ago with the

application of the coincidence site lattice (CSL) con-

cept to the atomic configuration at grain boundaries

[1, 2]. Even though the geometrical approach does not

predict energy, it has been useful in a comparison of

results with atomistic calculations and high resolution

electron microscopic observations [3–5]. The literature

of CSL theory is now very extensive and the CSL

concept plays a fundamental role in understanding the

nature of grain boundaries in polycrystalline materials,

and the phenomenon of twinning [6].

The first evidence of irrational twinning of cubic

crystals of a-AlMnSi structure was reported by Bend-

ersky et al. [7] in rapidly solidified Al–Mn–Fe–Si

system. They have shown that the five variants of cubic

crystals (symmetry Pm �3) rotated 72� about an irratio-

nal axis [1 s 0] result in icosahderal point group

symmetry ( m �3 �5). It was pointed out that the orienta-

tion relationship between the crystals is such that the

icosahedral motifs in all the crystals are parallel. The

cubic axes undergo a 5-fold rotation about an irrational

axis Æ1 s 0æ , but only five orientations occur among

hundreds of crystals. These twins are distinctly different

from Pauling’s [8] icosatwins model which are gener-

ated by a rotation around Æ1 1 0æ by 70.53� correspond-

ing to S = 3. The important point to emphasize is that

although the twin lattice is equivalent to coincidence

site lattice (CSL) of bicrystals in grain boundary

literature [9], the irrational twin lattices do not fit the

twinning laws discussed in classical crystallography [10].

Subsequently, these irrational twins were reported by

various authors [11–18] in different Al-transition metal

alloy systems with Si or Ge additions. Bendersky and

Cahn [19] have recently described a tiling pattern

involving pentagons, originated by Albrecht Dürer, as

an illuminating simple two-dimensional example of
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twinning of a two-dimensional periodic pattern that can

be irrationally twinned, and have related it to observed

grain orientations in Al13Fe4 and a-Al–Mn–Fe–Si, and

cited other examples in the literature.

The present work aims to demonstrate that these

cases, in which no CSL exists (‘‘S = ¥’’) can be

considered as limiting cases involving of sequences of

CSLs of decreasing density.

An important advance occurred with the realization

that an arbitrary grain boundary can be thought of as a

combination of structural units from favored grain

boundaries [3, 4]. The structural unit model (SUM)

developed by Sutton and Vitek [4] has been successfully

utilized to elucidate the sequence of fundamental units

at the grain boundaries. A structural unit is defined as a

group of atoms arranged in a characteristic configuration

[20–22]. The favored boundaries are composed of a

uniform array of a single type of structural unit, whilst

those between them are composed of combinations of

structural units from adjoining favored boundaries. An

instructive example is the S = 99 boundary in aluminum

arising from a rotation of 89.5� around [1 1 0] axis [23].

Mills [24] has explained that, on the basis of the

structural unit model, the S = 99 (557) boundary should

be composed of a mixture of the structural units of the

S = 3 (1 1 1) 70.53� coherent twin boundary and the

S = 3 (1 1 2) 109.5� incoherent twin boundary. Paidar

and Erhart [25] developed a decomposition scheme

into structural units to analyze the S = 9 and S = 11

asymmetrical boundaries in the fcc lattice.

The advent of quasicrystals has had an important

repercussion on our ideas concerning the structure of

irrational interfaces. The concepts of quasicrystals,

rational approximants and irrational interfaces are

briefly reviewed below.

In 1984, Shechtman and coworkers [26] reported the

occurrence of the icosahedral quasicrystalline phase in a

rapidly solidified Al–Mn alloy. The icosahedral phase

shows 5-fold, 3-fold and 2-fold rotational symmetry with

3 dimensional quasiperiodicity. The point group of this

phase in reciprocal space displays m �3 �5 symmetry. Soon

after the discovery of the icosahedral phase, Chattopad-

hyay et al. [27] and Bendersky et al. [28], reported the

decagonal phase having 10/mmm symmetry in reciprocal

space with 2-dimensional quasiperiodicity.

The rational approximant structures (RAS) are large

unit cell structures whose diffraction patterns closely

resemble those from quasicrystals [29]. They can be

derived by projection from the 6-dimensional space, if s
is replaced by a rational approximant p/q wher q and p

are successive terms in the Fibonacci sequence 1, 1, 2, 3,

5, 8, 13, … Some examples of RAS with their different

p/q values are listed in Table 1. Their pseudo 5-fold

axes corresponding to true 5-fold [s 1 0] axis in the

quasicrystals have also been indicated.

Chattopadhyay et al. [30] reported that the s phases

occurring in Al–Cu–Ni alloys can be interpreted as one

dimensional quasicrystals. They can be obtained by a

projection method along axes ½qq�p� where p/q is a

Fibonacci approximant to s [31]. Among the RAS, the

cubic a-AlMnSi [32] and T-MgAlZn [33] are the most

commonly occurring RAS for icosahedral quasicrystals.

The phase a-AlMnSi, 1/1 RAS, has a cubic structure of

two-shell Mackay icosahedra with a cluster of 54 atoms

[34]. All icosahedra are parallel in this structure and the

nearest neighbors are linked along their common three

fold axis. The lattice has symmetry m �3 m and the motif

has symmetry m �3 �5. Thus the structure has symmetry

m�3, governed by the intersection of the lattice and motif

symmetry. It is significant to note that m �3 �5 and m �3 m

are not related as group–subgroup.

The advent of quasicrystals inspired Rivier [35] to

forge a link between quasiperiodicity and grain bound-

aries. This was extended by Sutton [36, 37] to show that

irrational tilt grain boundaries in ordinary crystalline

materials display one dimensional quasiperiodic

arrangement of structural units. Gratias and Thalal

[38] emphasized the importance of higher dimensional

approach to demonstrate that the geometric descrip-

tion of quasiperiodicity links the general and coinci-

dence lattice grain boundaries.

The test for these theories is provided by the

irrational interfaces observed by Bendersky et al. [7].

The multiple twinning of cubic crystals leading to the

icosahedral symmetry in reciprocal space could be

considered as a special case of CSL S = ¥. The twin

boundaries have a low energy, so that they can

accommodate the translational displacement in a way

similar to quasicrystals.

Evidence for twinning in Al–Mn–Cr–Si [15, 16] and

Al–Fe–V–Si [13, 18] alloys has been observed. Icosahe-

dral quasicrystalline grains in Al–Fe–V–Si were sur-

rounded by the crystalline aggregate of a-Al(Fe,V)Si.

The crystalline particles are embedded in a-Al matrix.

The composite symmetry generated by the crystalline

variants in both the alloys was icosahedral.

Table 1 Rational approximant structures, the order of approxi-
mant, pseudo 5-fold axes and planes

N P/q Example [A5] (A5)

1 1/0 Al–Cu–Ru 3 2 0 2 1 0
2 1/1 a-Al–Mn–Si T–Mg–Zn–Al Ti–Mn–Si 5 3 0 3 2 0
3 2/1 Al–Pd–Mn 8 5 0 5 3 0
4 3/2 Mg–Zn–Al Ga–Mg–Zn Ti–Zn–Ni 13 8 0 8 5 0
5 5/3 Ti–Zn–Ni 21 13 0 13 8 0
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Axis/angle pair description for CSLs for rotation

around [1 1 1]

Ranganathan’s generating function [2] was used to

calculate all the values of S and corresponding angles

of misorientation, h, for specific axes of misorientation,

UVW, for cubic crystals:

R ¼ x2 þNy2 ð1Þ

tanðh=2Þ ¼ y
ffiffiffiffi

N
p

=x ð2Þ

where N = U2 + V2 + W2 and x and y are coprime

integers. The formula can be applied for non-cubic

crystals, by replacing N by a different quadratic form in

U, V and W, related to the nature of the lattice [39].

By using the above equations, with x and y consec-

utive terms in the Fibonacci sequence (1, 1, 2, 3, 5, 8,

13, …), S takes the values 3, 7, 19, 49, 129, 337, …, ¥ for

rotation axis [1 1 1]. Table 2 shows the different CSL

values calculated and the corresponding h values. For

the lowest CSL, S = 3, the angle of misorientation is

h = 60� (arcsine
ffiffiffi

3
p

=2). The angle of misorientation

for S = 7 is h = 38.21� (arcsine 5
ffiffiffi

3
p

=14). As the order

of CSL increases, the h value converges towards 44.48�.

In the limiting case (i.e. S = ¥), the h value associated

with the [1 1 1] axis is 44.48� (arcsine s
ffiffiffi

3
p

=4) corre-

sponding to an irrational twin relationship in a cube

and leads to an icosahedral symmetry operation [16].

This aspect will now be discussed in the context of 24

equivalent twinning operations for multiple twins,

S = ¥.

Axis/angle pair description of CSL for S = ¥

For CSL S = ¥, 24 equivalent operations are obtained

by combining 24 cube symmetry operations with an

irrational axis of rotation ½0 �1 s� and an angle of

rotation 72� (Table 3). These 24 equivalent twinning

operations can be expressed as 7 different set of

rotation axes with their angular misorientations [7].

All the five variants can be constructed by starting

with one crystal and generating the remaining four by

Table 3 Axis-angle
relationship of symmetry
operations of a cube for a
rotation of 72� about ½0 �1 s�

S.No. Axis Rotation h� Zone axis Angle W�

h k 1 u v w

1 0 0 1 90 �1 1 s3 154.76
2 0 0 1 180 �1 0 s2 120.00
3 0 0 1 270 1 1 1 44.48
4 0 1 0 90 �1 �1 �1 75.52
5 0 1 0 180 1 s 0 144.00
6 0 1 0 270 �1 2s� 1 1 138.59
7 1 0 0 90 s3 s3 �1 110.21
8 1 0 0 180 s2 s �1 180.00
9 1 0 0 270 s3 �1 s3 110.21
10 1 1 0 180 s3 �1 1 154.76
11 1 0 1 180 2s� 1 1 �1 138.59
12 0 1 1 180 1 1 1 164.48
13 �1 1 0 180 1 s3 �1 154.76
14 1 0 �1 180 1 �1 2s� 1 138.59
15 0 1 �1 180 �1 s3 s3 110.21
16 1 1 1 120 s 0 1 144.00
17 1 1 1 240 s2 �1 0 120.00
18 1 1 �1 120 s 0 �1 72.00
19 1 1 �1 240 �s �1 s2 180.00
20 �1 1 1 120 0 1 s 144.00
21 �1 1 1 240 0 s2 �1 120.00
22 1 �1 1 120 �1 s2 �s 180.00
23 1 �1 1 240 �1 s 0 72.00

Table 2 CSLs for rotation on Ranganathan’s generating function
for UVW = 1 1 1

x y S h�

3 1 3 60
5 1 7 38.21
8 2 19 46.83
13 3 49 43.57
21 5 129 44.82
34 8 337 44.35
s3 1 ¥ 44.48
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rotating four times about one of its Æ1 s 0æ axes. At this

stage first it is useful to designate the different variants

as A, B, C, D, E. In this terminology A has been

considered as the cubic crystal with 24 symmetry

operations. B has one symmetry operation, ½0 �1 s� with

72� misorientation and the remaining 23 equivalent

operations were obtained after combining ½0 �1 s�/72�
with cubic symmetry operations, as reported in

Table 3. Symmetry operations of crystal C, D and E

can be obtained by combining ½0 �1 s�/144�, ½0 �1 s�/216�
and ½0 �1 s�/288�, respectively with 24 cubic symmetry

operations. The transformation matrices for the oper-

ation (a) ½0 �1 s�/72�, (b) ½0 �1 s�/144�, (c) ½0 �1 s�/216� and

(d) ½0 �1 s�/288� are given below:

a.
1

2

1/s �s �1

s 1 �1=s

1 �1=s s

0

B

@

1

C

A

b.
1

2

�s �1 �1=s

1 �1=s �s

1/s �s 1

0

B

@

1

C

A

c.
1

2

�s 1 1/s

�1 �1=s �s

�1=s �s 1

0

B

@

1

C

A

d.
1

2

1/s s 1

�s 1 �1=s

�1 �1=s s

0

B

@

1

C

A

As an illustrative example the cubic lattice (having

icosahedral motif) along a plane close to an irrational

plane ½0 �1 s� has been displayed in Fig. 1. The rotation

of the lattice by 72� leaves the motif invariant (Fig. 1b).

Figure 1c shows the composite pattern after the five

rotations about ½0 �1 s�, leading to overall icoahedral

symmetry.

Low order CSLs as rational approximants to S = ¥

Table 4 a–c lists the set of axis–angle pairs for CSLs

S = 3, 7 and ¥ respectively. In the case of CSL S = 3,

the 24 operations can be expressed as 5 different sets of

axis–angle pairs and for CSL S = 7, the 24 operations

Fig. 1 (a) A plane close to
ð0 �1 sÞ in a cubic lattice
(having icosahedral motif),
(b) plane after 72� rotation
about ½0 �1 s� and (c) the
icosahedral symmetry
generated by the composite of
all five variants
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can be expressed as 8 different set of zone axes and

angles. There are 7 different sets of zone axes with the

corresponding angle of misorientations for CSL S = ¥
(Table 4c). It was also found that there are 8 different

sets of axis–angle pairs for CSLs S = 19, 49, 129 and

337. These different sets of axis–angle pairs for CSLs

S = 3, 7, 19, 49, 129, 337 and ¥ are shown in Table 5. It

is seen that the CSL S = 3, 7, 19, 49, 129, 337 and

higher CSL values following this series can approxi-

mate the CSL S = ¥ axes very closely, even if CSL

value is not very large. For example, the angular

deviation from the 5-fold axis is about 1.47� for S = 3,

1.40� for S = 7, 0.41� for S = 19 and 0.17� for S = 49.

For higher value CSLs the angular deviation is almost

negligible and the axes are very close to the axes

corresponding to S = ¥. It can be easily noticed that

Table 4 Axis–angle
relationship for CSLs
(a) S = 3, (b) S = 7 and
(c) S = ¥

Number Type of axis Angle of misorientation

(a) S = 3
3 1 1 1 60, 180
3·2 1 1 0 70.53, 109.47
6 2 1 0 131.81
6 3 1 1 146.44
3 2 1 1 180
(b) S = 7
3 1 1 1 38.21, 81.79, 158.21
3 2 1 0 73.40
3 3 2 0 149.00
3 3 3 1 110.92
3 3 1 0 115.38
3 2 1 1 135.38
3 5 1 1 158.21
3 3 2 1 180
(c) S = ¥
3 1 1 1 44.48, 75.52, 164.48
6 0 �1 s 72, 144
3 –s3 1 –s3 110.21
3 1 0 s2 120.00
3 1 2s –1 �1 138.59
3 1 �1 s3 154.76
3 –s2 s 1 180

Table 5 Set of axis–angle pairs for CSLs S = 3, 7, 19, 49, 129, 337 and ¥

S [1 1 1] 2-fold 3-fold 5-fold 5-fold
h s2 s 1 s2 1 0 s 1 0 s2 s 0 2t–1 1 1 s3 1 1 s3 s3 1

3 1 1 1 2 1 1 2 1 0 1 1 0 2 1 0 3 1 1 3 1 1 2 2 0 (= 1 1 0)
60, 180 180 131.81 70.53 131.81 146.44 146.44 109.47

7 1 1 1 3 2 1 3 1 0 2 1 0 3 2 0 4 2 2 (= 2 1 1) 5 1 1 3 3 1
38.21, 81.79, 180 115.38 73.4 149 135.58 158.21 110.92
158.21

19 1 1 1 5 3 2 5 2 0 3 2 0 5 3 0 7 3 3 8 2 2 (= 4 1 1) 5 5 1
46.83, 73.17, 180 121.76 71.59 142.14 139.74 153.47 110.01
166.83

49 1 1 1 8 5 3 8 3 0 5 3 0 8 5 0 11 5 5 13 3 3 8 8 2 (= 4 4 1)
43.57, 76.43, 180 119.33 72.17 142.72 138.15 155.25 110.3
163.57

129 1 1 1 13 8 5 13 5 0 8 5 0 13 8 0 18 8 8 (= 9 4 4) 21 5 5 13 13 3
44.82, 75.18, 180 120.26 71.94 143.73 138.76 154.57 110.18
164.82

337 1 1 1 21 13 8 21 8 0 13 8 0 21 13 0 29 13 13 34 8 8 (= 17 4 4) 21 21 5
44.35, 75.65, 180 119.9 72.02 144.1 138.53 154.83 110.22
164.35

¥ 1 1 1 s2 s 1 s2 1 0 s 1 0 s2 s 0 2s–1 1 1 s3 1 1 s3 s3 1
44.82, 75.52, 180 120 72 144 138.59 154.76 110.21
164.48

123

7700 J Mater Sci (2006) 41:7696–7703



indices of each axis correspond to Fibonacci sequence

and in the limit converge to s or multiple of s
depending on the particular axis-angle pairs. It is also

worth noting that the ratio of two consecutive S values

from low order to higher order converges to 2.61 and in

the limit the ratio is s2 (=2.618034…).

Figure 2 shows the stereograms displaying zone

axes of S = 3, 7 and ¥. The pattern obtained by the

misorientation S = 3 [1 1 1]/60� (Fig. 2a) shows

hexagonal symmetry [9]. Figure 2b displays the

misorientation S = 7 [1 1 1]/38.21� of rhombohedral

symmetry [9]. The stereogram displaying the zone

axes of S = ¥ [1 1 1]/44.48� is shown in Fig. 2c. The

stereogram again shows the rhombohedral point

group symmetry. The 7 different sets of axes belong-

ing to the symmetry operations of an icosahedral

point group can be seen (Fig. 2c). The 2-fold, 3-fold

and 5-fold axes of the icosahedral symmetry are

reflected as pseudo 5-fold [0 1 s], pseudo 2-fold

[1 s2 s] and pseudo 3-fold [0 s2 1] vectors of the

cube. The [1 1 1] direction of the cube also belongs to

the 3-fold vectors of icosahedral point group. The

vectors [1 1 s3], [1 s3 s3] and [1 2s–1 1] with angle of

rotations 154.76�, 110.21� and 138.59�, respectively are

displayed in stereogram.

In the context of dichromatic patterns the misori-

entation [1 1 1]/60� and [1 1 1]/h (h „ 60�) yield the

6’/m’m’m and �3m’ symmetry, respectively [9]. For

operation ½0 �1 s�/72�, which means that a lattice

originally coincident with the reference white lattice

and with the same color is rotated by an angle 72�
about ½0 �1 s� and subsequently undergoes color

reversal from white to black. Therefore the operation

½0 �1 s�/72� could be represented as { ½0 �1 s�72�}’, where

prime denotes the color-reversing symmetry. All

possible relative orientations of black and white

lattices could be obtained in this way and therefore

the composite symmetry in our case CSL S = ¥, leads

to the symmetry of �3m’. The series of CSLs S = 7, 19,

49, … (Table 5) display the �3m’ point symmetry.

The CSL approximants of S = ¥ mentioned in

above sections can be demonstrated graphically.

Ranganathan [2] has illustrated a method to demon-

strate the CSLs on a given plane (hkl). Two perpen-

dicular directions along X and Y axes are defined as [–

(k2 + l2), hk, hl] and ½0 1 �k� with the axial ratio,

�(h2 + k2 + l2). In Fig. 3, the (1 1 1) plane has been

considered. The directions X and Y are ½1 �1 0� and

½�1 �1 2�, respectively. The generating points for CSLs

S = 3, 7, 19, 49, 129 and 337 are shown in the plot. An

irrational line was drawn along h/2 = 22.24�. It is seen

that the low value CSLs are located relatively away

from the irrational line. As the CSL order increases

the corresponding S values come closer to the irratio-

nal line. The higher order approximants are indistin-

guishable from the irrational line and the CSL points

are almost overlapping the irrational line. This fact is

already reflected in Table 5, where the angle of

misorientations of the higher value CSLs, with the

Fig. 2 Stereograms illustrating the axes for CSLs (a) S = 3, (b)
S = 7 and (c) S = ¥
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corresponding axes, has very small deviation from the

misorientations of the respective S = ¥ case.

Structural unit model

Sutton [36] has discussed the structure of irrational

interfaces. The important point emphasized was that

the interface displays long range order and local

isomorphism and any irrational interface has a quasi-

periodic structure. The structural unit model as devel-

oped by Sutton and Vitek [4] and Rivier [35] had

definite rules for determining the sequence of struc-

tural units for arbitrarily large values of S. It was

predicted that the CSLs S > 7 (Table 5) could be

composed of S = 3 and S = 7 boundaries. If S = 7

[3 2 1]/180� boundary has a structural unit as P and

S = 3 [2 1 1]/180� boundary has a structural unit as Q,

the one complete period of the S = 19 [5 3 2]/180�
boundary can be constructed based on the stacking of

P and Q units, in the sequence of PQ (Table 6). For

S = 49 [8 5 3]/180�, the P and Q units can be stacked in

the sequence of PQP. Similarly for boundaries S = 129

[13 8 5]/180� and S = 337 [21 13 8]/180� units can be

stacked in the sequence of PQPPQ and PQPPQPQP,

respectively. The boundary S = ¥ [s 2s 1]/180� should

be composed of a mixture of the structural units of P

and Q, which are structural units of favored bound-

aries. The sequence achieved after stacking P and Q

units yield the form––PQPPQPQPPQPPQ––in quasi-

periodic order (Table 6).

It was shown [35, 36] that the structural unit

sequences could be obtained by the strip method.

The strip method generates the same sequence of

structural units as described by Sutton and Vitek [4].

Figure 4 illustrates the strip method for obtaining the

sequences of units at the boundaries reported in

Table 6. These boundary units are S = 7 [3 2 1]/180�
and S = 3 [2 1 1]/180� as P and Q, respectively. The

higher order CSLs (S > 7) are composed of mQ and nP

units, where m and n are coprime numbers and m < n.

In Fig. 4, the bold broken line lies within the strip and

was obtained by sliding the elementary square along

the line connecting the origin to (m, n). For example

the boundary S = 129 [13 8 5]/180� composed of 3P and

2Q units, the structural unit tiles P and Q are the

projection of the horizontal and vertical edges of the

unit square and leads to the sequence PPQPQP

(Fig. 4). Similarly the structural unit tiles P and Q for

S = 337 [21 13 8]/180� leads to the sequence

PPQPPQPQ.

A careful analysis of strip method shown for tiling

the boundary with the structural units (Fig. 4) and

Table 6 brings out some remarkable properties of the

stacking sequence. The most important among these is

the fact that the stacking sequence of P and Q units in

the CSLs follows the same sequence known for the

Fibonacci series. Table 6 shows the same inflation rules

A fi AB and B fi A as discussed for

the quasicrystal (Fig. 1). It has a great significance in

understanding the geometry of the CSLs mentioned

in Table 6. For each CSL, the repeat layer sequence

can be generated by stacking P and Q in a Fibonacci

and in the limit for S = ¥, the sequence converges to

the quasiperiodic sequence.

Fig. 3 Irrational line drawn
along S = ¥ [1 1 1]/44.48�.
Corresponding approximant
CSLs are also plotted

Table 6 Coincidence-site lattices as Fibonacci series

CSLs
S

P – 2 fold s2 s
1

Stacking sequence

3 2 1 1 Q
7 3 2 1 P
19 5 3 2 P Q
49 8 5 3 P Q P
129 13 8 5 P Q P P Q
337 21 13 8 P Q P P Q P Q P
¥ s2 s 1 … P Q P P Q P Q P P Q P P Q

…(Quasiperiodic)
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Conclusions

It has been demonstrated that in the limiting case the

CSLs with S = 3, 7, 19, 49, 129, 337, … are the RAS of

irrational twins. The composite symmetry generated by

the irrational twinning operation of five cubic variants

leads to the icosahedral point group. Except for the

hexagonal symmetry shown by the bicrystal with S = 3,

the bicrystals S = 7, 19, 49, 129, 337, … ¥ display the

rhombohedral symmetry. Higher order CSLs are com-

posed of structural units from S = 3 and S = 7. It has

been found that in the limit (S = ¥) the structural units

S = 3 and S = 7 form a quasiperiodic sequence.
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